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1.7.5 Non-canonical R? Poisson bracket for ray optics

The canonical Poisson bracket relations in (1.7.5) may be used to
transform to another Poisson bracket expressed solely in terms of
the variables X = (X1, Xy, X3) € R? by using the chain rule again,

dF oF (?H

WZ{F’H}:(‘)X

(1.7.7)

Here, the quantities {X;, X}, with ¢,5 = 1,2, 3, are obtained from
Poisson commutator table in (1.7.5).
This chain rule calculation reveals that the Poisson bracket in the

R3 variables (X1, X3, X3) repeats the commutator table [m;, =
(fjmk for the Lie algebra sp(2,R) of Hamiltonian matrices in (1.7.4).

Consequently, we may write this Poisson bracket equivalently as

o O @i

{F, H}—Xkcm X, 8X

(1.7.8)

In particular, the Poisson bracket between two of these quadratic-
monomial invariants is a linear function of them

G } = c Xk, L 7:9)
and we also have
DG DGOC }} = (' {X Nuhi= cﬁq’z (1.7.10)

Hence, the Jacobi identity is satisfied for the Poisson bracket (1.7.7)
as a consequence of

{2 125 25 P R i o DG P 2l
= ci{Xe, Xo} + G{ X, X} + i { X, Xk

&
:< (;ZJFCZCAWL% ]k)Xm:O?

followed by comparison with equation (1.7.3) for the Jacobi identity
in terms of the structure constants.
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Remark 1.7.6 This calculation for the Poisson bracket (1.7.8) pro-
vides an independent proof that it satisfies the Jacobi identity.

The chain rule calculation (1.7.7) also reveals the following.
Theorem 1.7.7 Under the map
THRZ = RS (q)p)l — D0 (X 56X ) (L7 1LiL)
the Poisson bracket among the axisymmetric optical variables (1.4.5)
ia = af 205 e =l =0, e =p-q;
may be expressed for S = X1Xo — X2 as

F
—(L:{F,H} = ARV RVAL

dt
0S? OF OH
= €ljk .
e G

@7:12)

Proof. This is a direct verification using formula (1.7.7). For exam-
ple,

05? 052 05
2€193—— = —4X 2€139— = 2X 2€931 —— = —2X>o.
€123 X3 35 €132 X, 1 €231 o 2
(The inessential factors of 2 may be absorbed into the definition of
the independent variable, which here is the time, ¢.) [

The standard symbol e, used in the last relation in (1.7.12) to
write the triple scalar product of vectors in index form is defined as
follows.

Definition 1.7.8 (Antisymmetric symbol €x;,,,)

The symbol €y, with €123 = 1 is the totally antisymmetric tensor
wm three dimensions: it vanishes if any of its indices are repeated
and it equals the parity of the permutations of the set {1,2,3} when
{k,l,m} are all different. That is,

€xkm = 0 (no sum)
and

€xim = +1 (resp. —1) for even (resp. odd) permutations of {1,2,3}.
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Remark 1.7.9 For three-dimensional vectors A, B, C, one has
(BE@ i —te;1 B @, and (A x (B x C))Z = €k AjeRimBiCm
Hence, the relation
€ijk€kim = 0i10jm — Oim0j

verifies the familiar BAC minus C'AB rule for the triple vector prod-
et Bhatts

Ax (B xC)=B(A-C)—C(A:B).

Corollary 1.7.10 The equations of Hamiltonian ray optics in az-
isymmetric translation-invariant media may be expressed with H =
H(Xl, XQ) as

XC— VSR CVIEEs punth wSo =06 Xt X2 >0 (1.7.13)

Thus, the flow preserves volume (that is, it satisfies divX = 0) and
the evolution along the curve X(z) € R® takes place on intersec-
tions of level surfaces of the azisymmetric media invariants S? and
II(X'l 5 XQ) m RS.

Remark 1.7.11 The Petzval invariant S? satisfies {S*, H} = 0
with the bracket (1.7.12) for every Hamiltonian H (X, X2, X3) ez-
pressed in these variables.

Definition 1.7.12 (Casimir, or distinguished function)

A function that Poisson-commutes with all other functions on a
certain space is the Poisson bracket’s Casimar, or distinguished
function.

1.8 Equilibrium solutions

1.8.1 Emergy-Casimir stability

Remark 1.8.1 (Critical energy plus Casimir equilibria)
A point of tangency of the level sets of Hamiltonian H and Casimir
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S? is an equilibrium solution of equation (1.7.18). This is because, at
such a point, the gradients of the Hamiltonian H and Casimir S? are
collinear; so the right-hand side of (1.7.13) vanishes. At such points
of tangency, the variation of the sum He = H + ®(S?) vanishes, for
some smooth function ®. That is,

O EX v 4 DI (250 i
i {VH + @’(S%Vﬂx DGl

when evaluated at equilibrium points X, where the level sets of H
and S? are tangent.

Exercise. Show that a point X, at which Hg has a crit-
ical point (i.e., §Hg = 0) must be an equilibrium solution
of equation (1.7.13). *

Energy-Casimir stability of equilibria

The second variation of the sum He = H +®(S?) is a quadratic form
in R3 given by

02Ha(X,) = 60X - D?Hg(X,) - 6X.

Thus we have, by Taylor’s theorem,
1
Hp(X. 4+ 6X) — Hp(X,) = 552H@(Xe) + o(|6X|?),

when evaluated at the critical point X.. Remarkably, the quadratic
form 02 Hg (X.) is the Hamiltonian for the dynamics linearised around
the critical point. Consequently, the second variation §?Hg is pre-
served by the linearised dynamics in a neighbourhood of the equilib-
rium point.

Exercise. Linearise the dynamical equation (1.7.13) about
an equilibrium X, for which the quantity H¢ has a criti-
cal point and show that the linearised dynamics conserves
the quadratic form arising from the second variation.
Show that the quadratic form is the Hamiltonian for the
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linearised dynamics.

What is the corresponding Poisson bracket?

Does this process provides a proper bracket for the lin-
earised dynamics? Prove that it does. *

The szgnature of the second variation provides a method for

determining the stability of the critical point. This is the energy-
Casimir stability method. This method is based on the following.

Theorem 1.8.2 A critical point X, of Hy = H + ®(S?) whose
second variation is definite in sign is a stable equilibrium solution
of equation (1.7.18).

Proof. A critical point X, of Hp = H + ®(S5?) is an equilibrium
solution of equation (1.7.13). Sign definiteness of the second vari-
ation provides a norm [|6X||2 = |42 Hg (X,)| for the perturbations
around the equilibrium X, that is conserved by the linearised dy-
namics. Being conserved by the dynamics linearised around the
equilibrium, this sign-definite distance from X, must remain con-
stant. Therefore, in this case, the absolute value of sign-definite
second variation |62Hg(X,)| provides a distance from the equi-
librium ||6X||? which is bounded in time under the linearised
dynamics. Hence, the equilibrium solution is stable.

Remark 1.8.3 Even when the second variation is indefinite, it 1s
stull linearly conserved. However, an indefinite second variation does
not provide a norm for the perturbations. Consequently, an indefinite
second wvariation does not limit the growth of a perturbation away
from its equilibrium.

Definition 1.8.4 (Geometrical nature of equilibria)
An equilibrium whose second variation is sign-definite are called el-
liptic, because the level sets of the second wvariation in this case
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make closed, nearly elliptical contours in its Fuclidean neighbour-
hood. Hence, the orbits on these closed level sets remain near the
equilibria in the sense of the Euclidean norm on R®. (In R3 all
norms are equivalent to the Euclidean norm.)

An equilibrium with sign-indefinite second variation is called hy-
perbolic, because the level sets of the second variation do not close
locally in its Euclidean neighbourhood. Hence, in this case, an initial
perturbation following a hyperbolic level set of the second variation
may move out of the Euclidean neighbourhood of the equilibrium.

1.9 Momentum maps

1.9.1 The action of Sp(2,R) on T*R? ~ R? x R?

The Lie group Sp(2,R) of symplectic real matrices M(s) acts diag-
onally on z = (q, p)” € T*R? by matrix multiplication as

z(s) = M(s)2(0) = exp(s£)z(0),

in which M(s)JM7* (s) = J is a symplectic 2 x 2 matrix. The 2 x 2
matrix tangent to the symplectic matrix M (s) at the identity s = 0
is given by

¢ = [M/(s)M(s)]

This is a 2 x 2 Hamiltonian matrix in sp(2, R), satisfying

s=0 :

SYL Y & RS olthat 2 & Je— a1 (5L
Exercise. Verify (1.9.1), cf. (1.6.8). *

The vector field £7(z) € TR? may be expressed as a derivative,

Eni(z) = i [exp(sﬁ)z]

73 =&z,

s=0

in which the diagonal action (£z) of the Hamiltonian matrix (&)
and the 2-component real multi-vector z = (q, p)’ has components
(Eriar, Eup)T, with k, 1 = 1,2. The matrix £ is any linear combination
of the traceless constant Hamiltonian matrices (1.6.5).
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Definition 1.9.1 (Map J : T*R? ~ R? x R? — sp(2,R)*)
The map, J : T*R? ~ R2 x R? — sp(2,R)* is defined by

¢ 5
el <j(z)’€>sp(2,R)*X5p(2yR)

= (z, Jﬁz)RQXRQ
= Zk(Jf)klZ]
A

— tr((z ® ZTJ)f) ; (1.9.2)
where z = (q, p)T € R? x R2.
Remark 1.9.2 The map J(z) given in (1.9.2) by
J(z) = (z@27J) € sp(2,R)*, (1.9.3)

sends z = (q, p)L € R2 xR? to J(z) = (z® 2J), which is an
element of sp(2,R)*, the dual space to sp(2,R). Under the pairing
(-, ) sp(2,R)* x sp(2,R) — R given by the trace of the matriz
product, one finds the Hamiltonian, or phase space function,

<j(Z), §> = tr (J(2)¢), (1.9.4)
for J(z) = (z®2z'J) € sp(2,R)* and & € sp(2,R).

Remark 1.9.3 (Map to axisymmetric invariant variables)
The map, J : T*R? ~ R? x R? — sp(2,R)* in (1.9.2) for Sp(2,R)
acting diagonally on R? x R? in equation (1.9.3) may be expressed in
matrix form as

¥ - caz )
ey
2 < ;2 :i ) : (1.9.5)

This is none other than matriz form of the map (1.7.11) to azisym-
metric invariant variables.

T*R* — R*: (q,p)’ — X = (X1, X2, X3),
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defined as
Ki=ig| 0L, 0 % = |plR i (Wil (1.9.6)
Applying the momentum map J to the vector of Hamiltonian ma-

trices m = (mq, ma, ms) in equation (1.6.5) yields the individual
components,

1l
Utim=20ca k= me = §zk(Jm)klzl. (1.9.7)
Thus, the map, J : T*R? ~ R? x R? — sp(2,R)* recovers the
components of the vector X = (X1, Xo, X3) that are related to the

components of the Petzval invariant by S? = X1 X5 — X3.

Exercise. Verify equation (1.9.7) explicitly by comput-
ing, for example,

NSRS =

X; = —(q,p)-(Jm1)<g>

Luggip)-{ o o (s

— RS

Remark 1.9.4 (Momentum maps for ray optics)

Our previous discussions have revealed that the azisymmetric
variables (X1, X9, X3) in (1.9.6) generate the Lie group of sym-
plectic transformations (1.6.3) as flows of Hamailtonian vector
fields. It turns out that this result is connected to the theory of
momentum maps. Momentum maps take phase space coordi-
nates (q, p) to the space of Hamiltonians whose flows are canon-
ical transformations of phase space. An example of a momentum
map already appeared in Definition 1.3.18.
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The Hamiltonian functions for the one-parameter subgroups
of the symplectic group Sp(2,R) in the KAN decomposition
(1.6.13) are given by

i
Eli— 5(}(1 _|_X2)’ H = X3 and oS H = —X7. <198)

The three phase space functions,

1 ;
HK: 5(‘q‘2+‘p|2> Hy = q-p; HN:—|qIQ7 (199)

map the phase space (q, p) to these Hamiltonians whose cor-
responding Poisson brackels are the Hamiltonian vector fields
for the corresponding one-parameter subgroups. These lhree
Hamiltonians and, equally well, any other linear combinations
of (X1, X, X3), arise from a single momentum map, as we
shall explain in Section 1.9.2.

Remark 1.9.5 Momentum maps are Potsson maps. That is,
they map Poisson brackets on phase space into Poisson brackets
on the target space.

The corresponding Lie algebra product in sp(2,R) was iden-
tified using Theorem 1.7.7 with the vector cross product in the
space R® by using the R3-bracket. The R3-brackets among the
(X1, Xo, X3) closed among themselves. Therefore, as expected,
the momentum map was found to be Poisson. In general, when
the Poisson bracket relations are all linear, they will be Lie-
Poisson brackets, defined below in Section 1.10.1.

1.9.2 Summary: Properties of momentum maps

A momentum map takes phase space coordinates (q, p) to the space
of Hamiltonians, whose flows are canonical transformations of phase
space. The ingredients of the momentum map are: (i) a represen-
tation of the infinitesimal action of the Lie algebra of the trans-
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formation group on the coordinate space; and (ii) an appropriate
pairing with the conjugate momentum space. For example, one may
construct a momentum map by using the familiar pairing ((-, - )
between momentum in phase space and the velocity in the tangent
space of the configuration manifold that also appears in the Legen-
dre transformation. For this pairing, the momentum map is derived
from the cotangent lift of the infinitesimal action £y/(q) of the Lie
algebra of the transformation group on the configuration manifold to
its action on the canonical momentum. In this case, the formula for
the momentum map J(q, p) is

Tl ) = <J(q, ) §> = <<p, EM(q)>>, (1.9.10)

in which the other pairing (-, -) is between the Lie algebra and its
dual. This means the momentum map J for the Hamiltonian J¢
lives in the dual space of the Lie algebra belonging to the Lie sym-
metry. The flow of its vector field X ;¢ = {-, J°} is the transfor-
mation of phase space by the cotangent lift of a Lie group symmetry
infinitesimally generated for configuration space by £37(q). The com-
putation of the Lagrange invariant S in (1.3.23) is an example of this
type of momentum map.

Not all momentum maps arise as cotangent lifts. Momentum
maps may also arise from the infinitesimal action of the Lie algebra
on the phase space manifold &p«py(z) with z = (q, p) by using the
pairing with the symplectic form. The formula for the momentum
map is then

Té(2) = (T (@), £) = (2, Jer-u(2)), (1.9.11)

where J is the symplectic form and (-, -) is the inner product on
phase space T*R ~ R x R for n degrees of freedom. The transfor-
mation to axisymmetric variables in (1.9.5) is an example of a mo-
mentum map obtained from the symplectic pairing. Both of these
approaches are useful and we have seen that both types of momentum
maps are summoned when reduction by S axisymmetry is applied
in ray optics. The present chapter explores the consequences of S?
symmetry and the reductions of phase space associated with the mo-
mentum maps for this symmetry.
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The level sets of the momentum maps provide the geometrical
setting for dynamics with symmetry. The components of the mo-
mentum map live on the dual of the Lie symmetry algebra, which
is a linear space. The level sets of the components of the momen-
tum map provide the natural coordinates for the reduced dynamics.
Thus, the motion takes place in a reduced space whose coordinates
are invariant under the original S symmetry. The motion in the
reduced space lies on a level set of the momentum map for the S!
symmetry. It also lies on a level set of the Hamiltonian. Hence, the
dynamics in the reduced space of coordinates that are invariant un-
der the ST symmetry is confined to the intersections in the reduced
space of the level sets of the Hamiltonian and the momentum map
associated with that symmetry. Moreover, in most cases, restriction
to either level set results in symplectic (canonical) dynamics.

After the solution for this S'-reduced motion is determined, one
must reconstruct the phase associated with the S* symmetry, which
decouples from the dynamics of the rest of system through the pro-
cess of reduction. Thus, each point on the manifolds defined by the
level sets of the Hamiltonian and the momentum map in the reduced
space is associated with an orbit of the phase on S'. This S! phase
must be reconstructed from the solution on the reduced space of S*-
invariant functions. The reconstruction of the phase is of interest
in its own right, because it contains both geometric and dynamic
components, as discussed in Section 1.12.2.

One advantage of this geometric setting is that it readily reveals
how bifurcations arise under changes of parameters in the system,
for example, under changes in parameters in the Hamiltonian. In
this setting, bifurcations are topological transitions in the intersec-
tions of level surfaces of orbit mantfolds of the Hamiltonian and
momentum map. The motion proceeds along these intersections in
the reduced space whose points are defined by S'-invariant coordi-
nates. These topological changes in the intersections of the orbit
manifolds accompany qualitative changes in the solution behaviour,
such as the change of stability of an equilibrium, or the creation or
destruction of equilibria. The display of these changes of topology in
the reduced space of S'-invariant functions also allows a visual clas-
sification of potential bifurcations. That is, it affords an opportunity
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to organise the choreography of bifurcations that are available to
the system as its parameters are varied. For an example of this type
of geometric bifurcation analysis, see Section 4.5.5.

Remark 1.9.6 The two results:

(1) that the action of a Lie group G with Lie algebra g on a symplectic
manifold P should be accompanied by a momentum map J : P — g*;
and

(2) that the orbits of this action are themselves symplectic manifolds,
both occur already in [Liel1890]. See [Wel983] for an interesting
discussion of Lie’s contributions to the theory of momentum maps.

The reader should consult [MaRa1994, OrRa2004] for more dis-
cussions and additional examples of momentum maps.

1.10 Lie-Poisson brackets

1.10.1 The R3-bracket for ray optics is Lie-Poisson

The Casimir invariant S? = X; X5 — X2 for the R3-bracket (1.7.12)
is quadratic. In such cases, one may write the Poisson bracket on R3
in the suggestive form with a pairing (-, - ),

OF OH OF OH
{FH} = — X, o> A%, = <X {8X’ - D (1.10.1)

where cfj with 7,7,k = 1,2, 3 are the structure constants of a three-
dimensional Lie algebra operation denoted as [, -]. In the particular
casepofiray optics,iclhl= 4 c2oe1 2 el — 9 and the restiof the
structure constants either vanish, or are obtained from antisymmetry
of cé“j under exchange of any pair of its indices. These values are
the structure constants of the 2 x 2 Hamiltonian matrices (1.6.5),
which represent any of the Lie algebras sp(2,R), so(2,1), su(1,1), or
sl(2,R). Thus, the reduced description of Hamiltonian ray optics in
terms of axisymmetric R? variables may be defined on the dual space
of any of these Lie algebras, say, sp(2,R)* for definiteness, where
duality is defined by pairing (-, -) in R3 (contraction of indices).
Since R? is dual to itself under this pairing, upper and lower indices
are equivalent.
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Definition 1.10.1 (Lie-Poisson bracket)

A Lie-Poisson bracket is a bracket operation defined as a linear
functional of a Lie algebra bracket by a real-valued pairing between a
Lie algebra and its dual space.

Remark 1.10.2 Equation (1.10.1) defines a Lie-Poisson bracket.
Being a linear functional of an operation (the Lie bracket [-, -])
which satisfies the Jacobi identity, any Lie-Poisson bracket also sat-
1sfies the Jacobi identity.

1.10.2 Lie-Poisson brackets with quadratic Casimirs

An interesting class of Lie-Poisson brackets emerges from the R3
Poisson bracket,

(F,H}¢ :=—VC-VF x VH, (1.10.2)

when its Casimir is the quadratic form on R? given by C' = %XT- KX
associated with the 3 x 3 symmetric matrix KI' = K. This bracket
may be written equivalently in various notations, including index
form, R3 vector form, and Lie-Poisson form, as

B, I8 = = NG T sl
= —XlKliﬁijkaa—)ig—i
==X K (g—}}; P Z—J}Z)
= — <X, {g—}};, Z—I;L(> ; (Lal01.3)

Remark 1.10.3 The triple scalar product of gradients in the R3-
bracket (1.10.2) is the determinant of the Jacobian matriz for the
transformation (X1, X, X3) — (C,F,H), which is known to sat-
isfy the Jacobi identity. Being a special case, the Poisson bracket
{F, H}k also satisfies the Jacobi identity.

In terms of the R® components, the Poisson bracket (1.10.3) yields

U G — =S s (1.10.4)
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The Lie-Poisson form in (1.10.3) associates the R® bracket to a Lie
algebra with structure constants given in the dual vector basis by

(&5 Gl = ezK“@;jk = ez(i_ljk- (L1005

The Lie group belonging to this Lie algebra is the invariance group
of the quadratic Casimir. Namely, it is the transformation group Gy
with elements O(s) € Gk with O(t)|;—o = /d whose action from the
left on R? is given by X — OX, such that

OT(H)KO(t) = K (1.10.6)
or, equivalently,

)

KON OS= 100 (1.10.7)

for the 3 x 3 symmetric matrix KI' = K. A matrix O(t) satisfying
(1.10.6) is called a quasi-orthogonal matriz with respect to K.
That is, O(t) is the similarity transformation of an orthogonal matrix
by the symmetric matrix K.

These transformations X — OX are not orthogonal, unless K =
Id. However, they do form a Lie group under matrix multiplication,
since for any two of them O; and O3, we have

(0102)TK(0105) = 03 (0FKO1)0O3 = O3 KOs = K. (1.10.8)

The corresponding Lie algebra gk is the derivative of the defining
condition of the Lie group (1.10.6), evaluated at the identity. This
yields,

Utlosops ]| K +icomse)lE

t=0 (05

Consequently, if X = [O"l(')]tfo € gk, the quantity KX is skew.
That is,

(KX)" = —KX .

A vector representation of this skew matrix is provided by the fol-
lowing hat map from the Lie algebra gk to vectors in R?,

~

. gk — R defined by (K)A()jk = Mgl (1.10.9)
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When K is invertible, the hat map (* ) in (1.10.9) is a linear isomor-
phism. For any vectors u, v € R3 with components «/, v*, where
9.k =125 3% onelcomputes

A~

W (KX)p0® = —X-K(uxv)
= —X-:[u, vlk.

This is the Lie-Poisson bracket for the Lie algebra structure repre-
sented on R? by the vector product,

[ e = (U (1.10.10)

Thus, the Lie algebra of the Lie group of transformations of R? leav-
ing invariant the quadratic form C = %XT - KX may be identified
with the cross product of vectors in R? by using the K-pairing instead
of the usual dot product. For example, in the case of the Petzval in-
variant we have

SEs e N = X

o = O

(@ e
()
o

Consequently,
0
0

0
K= 1
0 — 1|

o O =

for ray optics, with X = (X1, Xo, X3)7.

Exercise. Verify that inserting this formula for K into
formula (1.10.4) recovers the Lie-Poisson bracket rela-
tions (1.7.5) for ray optics (up to an inessential constant).

*

Hence, we have proved the following theorem.

Theorem 1.10.4 Consider the R3 bracket in equation (1.10.3)

1l
{F, H}K =WV @ NV e ox NEHR witht Cra= 3 X - KX, (1.10.11)
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in which KI' = K is a 3 x 3 real symmetric matriz and X € R3.
The quadratic form Ck is the Casimir function for the Lie-Poisson
bracket given by

(1.10.12)

or ol
X loXeE

(F,HY = —X-K<—
3 _<X, [%’%}J’ (1.10.13)

defined on the dual of the three-dimensional Lie algebra gk, whose
bracket has the following vector product representation for u, v € R3,

[z e = (K X ) (1.10.14)

This s the Lie algebra bracket for the Lie group Gk of transfor-
mations of R® given by action from the left X — OX, such that
OTKO = K, thereby leaving the quadratic form Ck invariant.

Definition 1.10.5 (The ad and ad* operations)
The adjoint (ad) and coadjoint (ad™) operations are defined for
the Lie-Potsson bracket (1.10.13) with quadratic Casimir, Ck =
%X- KX, as follows.
Xslu, Mrni= i adavie— (@dEXG v L0)
= KX:-(uxv)=(KXxu)- v.
Thus, we have explicitly,

aduvi—IK(@Peve il andifads X4 ——us @& . (1.10.16)

These definitions of the ad and ad® operations yield the following
theorem for the dynamics.

Theorem 1.10.6 (Lie-Poisson dynamics)
The Lie-Poisson dynamics (1.10.12) - (1.10.13) is expressed in
terms of the ad and ad®™ operations by

dF’ OF
it {F, Hix = <X> adgp/ox 8_X>

: OF




66 CHAPTER 1. FERMAT’S RAY OPTICS

so that the Lie-Poisson dynamics expresses itself as coadjoint
motion,
dX OH

— = {X, Hx = adjypxX = - 5o x KX, (1.10.18)

By construction, this equation conserves the quadratic Casimair,
Ck = + X - KX.

Exercise. Write the equations of coadjoint motion (1.10.18)
for K = diag(1,1,1) and H = X2 — X2/2. *

1.11 Divergenceless vector fields

1.11.1 Jacobi identity

One may verify directly that the R3 bracket in (1.7.12) and in the
class of brackets (1.10.11) does indeed satisfy the defining proper-
ties of a Poisson bracket. Clearly, it is a bilinear, skew-symmetric
form. To show that it is also a Leibnitz operator that satisfies the
Jacobi identity, we identify the bracket in (1.7.12) with the following
divergenceless vector field on R® defined by

Nt HIE SR VA i @SR

This isomorphism identifies the bracket in (1.11.1) acting on func-
tions on R3 with the action of the divergenceless vector fields X. It
remains to verify the Jacobi identity explicitly, by using the proper-
ties of the commutator of divergenceless vector fields.

Definition 1.11.1 (Jacobi-Lie bracket)
The commutator of two divergenceless vector fields u,v € X 1s de-

fined to be

[l vV, w- V| = ((V-V)W— (W‘V)V) V. L ()
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The coefficient of the commutator of vector fields is called the Jacobi-
Lie bracket. It may be written without risk of confusion in the same
notation as

[v, w] = (v - V)w — (w-V)v. @a1n3)

In Euclidean vector components, the Jacobi-Lie bracket (1.11.3) is
expressed as

[U, ’LUL = W; ;V; — Ui W5 . (1.11.4)
Here, a subscript comma denotes partial derivative, e.g., v; ; =
0v;/0x; and one sums repeated indices over their range; for ex-

ample, 1,5 = 1,2,3, in three dimensions.

Exercise. Show that [v,w];; = 0 for the expression in
(1.11.4); so the commutator of two divergenceless vector
fields yields another one. *

Remark 1.11.2 (Interpreting commutators of vector fields)
We may interpret a smooth vector field in R3 as the tangent at the
identity (e = 0) of a one-parameter flow ¢. in R® parameterised by
e € R and given by integrating

d

de

0
o = V; (X) axz 3

(1.11.5)

The characteristic equations of this flow are

dxz-
de

da; .
di — v Bclle)l e sohat — el — 123 (1.11.6)
€

e=0

Integration of the characteristic equations (1.11.6) yields the solution
for the flow x(€) = ¢.x of the vector field defined by (1.11.5), whose
initial condition starts from x = x(0). Suppose the characteristic
equations for two such flows parameterised by (e,0) € R are given
respectively by,

da:i
de

— wl(xi(e))tidand % — ().
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The difference of their cross derivatives evaluated at the identity
yields the Jacobi-Lie bracket,

E e=0 do lo=0 2 EOT o=0 de le=0 T &sz(X(E)) e=0 dO’Uz(X(O—)) o=0
= 8a:j de =0 8xj do =0

— Wt — Yty

= [U, w]i 5

Thus, the Jacobi-Lie bracket of vector fields is the difference between
the cross-derivatives with respect to their corresponding characteristic
equations, evaluated at the identity. Of course, this difference of cross
derivatives would vanish if each derivative were not evaluated before
taking the next one.

The composition of Jacobi-Lie brackets for three divergenceless
vector fields u, v, w € X has components given by

[, [v,wl], = wkVjWi ks + UKV R — UKW KV,

— URW; V5 jk — VjWh, jUs kT W5V jU; k - (Lt
Equivalently, in vector form,

[u, ['U,wH VA W Y W — YW N

YA e e YA e Y Y

Theorem 1.11.3 The Jacobi-Lie bracket of divergenceless vector fields
satisfies the Jacobi identity,

[u, [v,w] ] + [v, [w,u]] + [w, [u,v]] =0. (1.11.8)

Proof. Direct verification using (1.11.7) and summing over cyclic
permutations. H

Exercise. Prove Theorem 1.11.3 in streamlined notation
obtained by writing

[0, w] = v(w) —w(v),

and using bilinearity of the Jacobi-Lie bracket. *
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Lemma 1.11.4 The R3-bracket (1.7.12) may be identified with the
divergenceless vector fields in (1.11.1) by

[(Xa, Xu| = —X(a,my (1.11.9)
where [ Xq, Xg] is the Jacobi-Lie bracket of vector fields X and X .

Proof. Equation (1.11.9) may be verified by a direct calculation,

ey 2l = Ko Km - e e
=GN TEENE S e )
= G e e = AL G C o L)
= {{G, H}, -} = ~Xiem -

Remark 1.11.5 The last step in the proof of Lemma 1.11.4 uses the
Jacobi identity for the class of R®-brackets in equation (1.10.2).

1.11.2 Geometric forms of Poisson brackets
Determinant & wedge-product forms of the canonical bracket

For one degree of freedom, the canonical Poisson bracket {F, H}
is the same as the determinant for a change of variables (g,p) —

(F(g,p), H(q,p)),

QEORE LOFOE o )
dq Op  Oq Op d(q,p)

This may be written in terms of the differentials of the functions
(F(q,p), H(q,p)) defined as

OF oOF OH OH
R E R e disbiry ==y ety (el ]
94 ‘Hap p an 94 q+ o ( )

{F,H} =

(1.11.10)

by writing the canonical Poisson bracket {F, H} as a phase space
density

a(F, H)

WENJE = deteee .
d(q,p)

dgNdp={F,H}dqNdp. (Ll T2)
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Here the wedge product A in dF° NdH = — dH A dF' is introduced to
impose the antisymmetry of the Jacobian determinant under inter-
change of its columns.

Definition 1.11.6 (Wedge product of differentials)
The wedge product of differentials (dF,dG,dH) of any smooth func-
tions (F,G, ) is defined by its following three properties.

(i) A is anticommutative: dF N\ dG = —dG A dF;
(it) A is bilinear: (adF + bdG) NdH = a(dF NdH) + b(dG NdH);
(111) A is associative: dF' N (dG ANdH) = (dF NdG) AN dH.

Remark 1.11.7 These are the usual properties of area elements and
volume elements in integral calculus. These properties also apply in
computing changes of variables.

Exercise. Verify formula (1.11.12) from equation (1.11.11)
and the linearity and antisymmetry of the wedge product,
so that, e.g., dg A dp = —dp A dq and dg A dg = 0.

*

Determinant & wedge-product forms of the R3-bracket

The R3-bracket in equation (1.7.12) may also be rewritten equiva-
lently as a Jacobian determinant, namely,

oS, F IH)

BN N = — £ s
{ J 0(X1, X2, X3) ( )
where
O(F1, Fay F3) OF :
—det | — | . It
) T ek ( )

The determinant in three dimensions may be defined using the anti-
symmetric tensor symbol €;;;, as

OF OF, OF, OF. ,
b o= ol — e £ ey 1.11.15
L (ax) SO e O Gl
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where, as mentioned earlier, we sum on repeated indices over their
range. We shall keep track of the antisymmetry of the determinant
in three dimensions by using the wedge product (A\)

F
det (g—x> dX1 AdXo AdXs =dFy AdFy AdF;.  (1.11.16)

Thus, the R3-bracket in equation (1.7.12) may be rewritten equiva-
lently in wedge-product form as

W H NS NdXs = (VS VB NER e A
— —dS?’AdF AdH .

Poisson brackets of this type are called Nambu brackets, since
[Na1973] introduced them in three dimensions. They can be gen-
eralised to any dimension, but this requires additional compatibility
conditions [Tal1994].

1.11.3 Nambu brackets

Theorem 1.11.8 (Nambu brackets [Na1973])
For any smooth functions F H € F(R3) of coordinates X € R? with
volume element d>X, the Nambu bracket

(F, H} : F(R?) x F(R®) — F(R®)
defined by

{BED d2X6 = SN0 IEESON Hd R
— IO A B A (LA A7)

possesses the properties (1.3.4) required of a Poisson bracket for any
choice of distinguished smooth function C : R?® — R.

Proof. The bilinear skew-symmetric Nambu R? bracket yields the
divergenceless vector field

Xg={,h}=VCxVH -V,

in which
divi (ME < N —0n
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Divergenceless vector fields are derivative operators that satisfy the
Leibnitz product rule and the Jacobi identity. These properties hold
in this case for any choice of smooth functions C, H € F(R3). The
other two properties — bilinearity and skew symmetry — hold as
properties of the wedge product. Hence, the Nambu R? bracket
in (1.11.17) satisfies all the properties required of a Poisson bracket
specified in Definition 1.3.4. |

1.12 Geometry of solution behaviour

1.12.1 Restricting axisymmetric ray optics to level sets

Having realised that the R3-bracket in equation (1.7.12) is associated
to Jacobian determinants for changes of variables, it is natural to
transform the dynamics of the axisymmetric optical variables (1.4.5)
from three dimensions (X1, X2, X3) € R3 to one of its level sets
S? > 0. For convenience, we first make a linear change of Cartesian
coordinates in R? that explicitly displays the axisymmetry of the
level sets of S? under rotations, namely,

G2 = 00 = 0 =N e e (1.12.1)
with

1 it
:—X =
2( _1+X2), Yo 2

In these new Cartesian coordinates (Y1, Ys,Y3) € R3, the level sets
of S? are manifestly invariant under rotations about the Yj-axis.

i Co= ) M= o

Exercise. Show that this linear change of Cartesian co-
ordinates preserves the orientation of volume elements,
but scales them by a constant factor of one-half. That is,
show

1 .
{F, H}le/\dYQ/\dY3: §{F7 H}Xm/\dXQ/\ng.

The overall constant factor of one-half here is unimpor-
tant, because it may be simply absorbed into the units of
axial distance in the dynamics induced by the R3-bracket
for axisymmetric ray optics in the Y-variables. *
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Each of the family of hyperboloids of revolution in (1.12.1)
comprises a layer in the “hyperbolic onion” preserved by axisym-
metric ray optics. We use hyperbolic polar coordinates on these
layers in analogy to spherical coordinates,

Yo = Scoshau, Y5 = Sisinhtucost) = Wassusismlabiisinag) .
(1.12.2)
The R3-bracket (1.7.12) thereby transforms into hyperbolic co-
ordinates (1.12.2) as

{F, H}dY1 ANdYa ANdY3 = —{F, H}pypers S dS A dip A dcoshu.
(L1025
Note that the oriented quantity

S%d coshu A dyp = —S2%dip A dcoshu,

is the area element on the hyperboloid corresponding to the
constant S2.

On a constant level surface of S? the function {F, H W et
only depends on (coshwu,) so the Poisson bracket for optical
motion on any particular hyperboloid is then

W H Y% = — 52d5 ) dE N (1.12.4)
= — S%dS A {F, H}pypers dib A dcoshu,

with

OF o OHisoE:
{F, H}hyperb = < > :

O dcoshu  Ocoshu oY

Being a constant of the motion, the value of S? may be absorbed
by a choice of units for any given initial condition and the Poisson
bracket for the optical motion thereby becomes canonical on
each hyperboloid,

dap OH
Gy o e 1.12.5
dz {4, H Fhypert O cosh u ( )
dcoshu OH
—  feutne, JE s = [(E12:6)

dz I

73
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In the Cartesian variables (Y7, Ys,Y3) € R2, one has coshu =
Y1/S and ¢ = tan=*(Y3/Y3). In the original variables,

NG X
coshu = S e and 1) = tan™!

25

2X3
Xo— X1

Example 1.12.1 For a parazial harmonic quide, whose Hamil-
tonian 1s,

1 1
B = Sl b= sl i) =14, (1.12.7)

the ray paths consist of circles cut by the intersections of level
sets of the planes Y1 = const with the hyperboloids of revolution
about the Yi-axis, given by S? = const.

The dynamics for Y € R3 is given by

W= I L S8 T = N 0T 1243

on using the (1.12.1) to transform the R3 bracket in (1.7.12).
Thus, for the parazial harmonic guide, the rays spiral down the
optical axis following circular helices whose radius is determined
by their initial conditions.

Exercise. Verify that equation (1.12.3) transforms the
R3-bracket from Cartesian to hyperboloidal coordinates,
by using the definitions in equations (1.12.2). *

Exercise. Reduce {F, H }pyperp to the conical level set

Si= 0 *

Exercise. Reduce the R® dynamics of (1.7.12) to level
sets of the Hamiltonian

JEl = @G A2 06 1-eie

for constants (a, b, ¢). Explain how this reduction simpli-
fies the equations of motion. *
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1.12.2 Geometric phase on level sets of S* = p?

In polar coordinates, the axisymmetric invariants are

1
o= g(e+spter),
Sy Laploes
Yo = 9 pr+p¢/r (i )
Y5 = rp-.

Hence, the corresponding volume elements are found to be

d3Y =: dYi AdYyAdYs
3
— d%/\dcoshu/\dw

= dpj Adpy Adr. (1.12.9)
On a level set of S = py this implies
Sdcoshu Adyp =2dp, Adr, @ 12810)

so the transformation of variables (coshu, 1) — (p;, 7) is canonical
on level sets of S = py.

One recalls Stokes Theorem on phase space

// dp; A dg; = j{ p;dg; , (1.12.11)
A 0A

where the boundary of the phase space area 0A is taken around a
loop on a closed orbit. Either in polar coordinates or on an invariant
hyperboloid S = pg4 this loop integral becomes

fpwiq = fpjdqj = ]{(pqsdcwrprdr)

= f (%quﬁ + Coshudw> :
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Thus we may compute the total phase change around a closed peri-
odic orbit on the level set of hyperboloid S from

S3 S3
f " = 2o

= —jgcoshud@b - 'y{p o @ha] o (L)

- N 7

Geometric A¢p  Dynamic Ag
Evidently, one may denote the total change in phase as the sum

AQS = Angeom e A¢dyn >

by identifying the corresponding terms in the previous formula. By
the Stokes theorem (1.12.11), one sees that the geometric phase as-
sociated with a periodic motion on a particular hyperboloid is given
by the hyperbolic solid angle enclosed by the orbit, times a constant
factor depending on the level set value S = pg. Thus, the name:
geometric phase.

1.13 Singular ray optics in anisotropic media

Every ray of light has therefore two opposite sides. ...
And since the crystal by this disposition or virtue does
not act upon the rays except when one of their sides of
unusual refraction looks toward that coast, this argues a
virtue or disposition in those sides of the rays which an-
swers to and sympathises with that virtue or disposition
of the crystal, as the poles of two magnets answer to one
another. . ..

— Newton, Optiks 1704

Some media have directional properties that are exhibited by
differences in the transmission of light in different directions. This
effect is seen, for example, in certain crystals. Fermat’s principle
for such media still conceives light rays as lines in space (i.e., no
polarisation vectors, yet), but the refractive index along the paths
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of the rays in the medium is allowed to depend on both position
and direction. In this case, Theorem 1.1.1 adapts easily to yield
the expected 3D eikonal equation (1.1.9). However, in general, the
Lagrangian in such a description is singular, as we shall explain. The
Euler-Lagrange equation,

al [ QL oL
E(@r(s)) o oes) Uty

follows from the variational principle,

0= — 5/AB L(x(s),#(s))ds . (1.13.2)

The Lagrangian in the case of an anisotropic optical medium is given
by

(&) (@)= n(uls), nEhi sk @3:3)
Here the refractive index is modelled as a function both of position

along the ray r(s) and the ray direction (s), which is a unit vector.
The latter is defined when s is the arclength as

S=wle)) () et Bl =1, (1.13.4)
Exercise. Show that the variation of the ray direction
in (1.13.4) is related to the variation of the path dr(s) by
s _1 Z AN °
OB = == B X (sxér(s)).
]
*

The variational principle (1.13.2) with optical Lagrangian (1.13.3)
implies the following 8D eikonal equation for the vector r(s) defin-
ing the ray path,

%<n<r7§)§+A(rjg)> L %f). (1.13.5)

Here, the anisotropy vector A(r,s) is defined as

on Ve O NOn
NS — 5 _— = = X (S X £> s (1136)
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The anisotropy vector A is the projection of the vector dn /0t onto
the plane that is normal to r and tangent to the direction sphere
iz =i

In the 1 notation, the 8D optical momentum is defined as

. A
Ps = 5ils)

= n(r, ) 4+ A, T). (L350

Thus, the 3D optical momentum pg lies in the plane spanned by the
vectors I and On/0r, and these two vectors are orthogonal because
of the constraint || = 1. The optical momentum is related to the
tangent vector :(s) along the ray path r(s) by

n(r,r )i = ps — A(r, 1), (1.13.8)
whose norm is
lps — A(x;1)| = n(r,) since A =0. (1.13.9)

Remark 1.13.1 The anisotropy vector is orthogonal to the desired
ray direction and is a prescribed function of it and the position along
the ray path.

Unfortunately, it is not possible to solve for the ray direction 1, given
the 3D optical momentum ps and position r. The 3D optical mo-
mentum decomposes conveniently into components which are parallel
and perpendicular to r, as

ps = n(r, I ) + A(r,f) =: p3| + PsL -

However, media for which these functional relations are nontrivial
do not in general admit solutions for the tangent vector 1(s) as a
function of (r(s), ps(s)). Thus, the ray direction is not solvable in
general from the optical momentum and ray path.®? However, the
3D eikonal equation (1.13.5) still holds and so does its associated
antsotropic Huygens wave front description,

ISt 1)
Or

°This is an example of a singular, or degenerate, Lagrangian.

=n(r,*)r + A(r, 1),
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whose norm yields the scalar Huygens equation for anisotropic

medza,
2

s o n’(r,i) + |[A(r, 1)

or

2

Remark 1.13.2 (Ibn Sahl-Snell law for anisotropic media)
The statement of the Ibn Sahl-Snell law relation at discontinuities of
the refractive index in anisotropic media 1s rather more involved than
for isotropic media. A break in the direction's of the ray vector is still
expected at any finite discontinuity in the refractive index n = |n| en-
countered along the ray path r(s). According to the eikonal equation
for anisotropic media (1.15.5) the jumyp (denoted by A ) in 3D optical
momentum across the discontinuity must satisfy the relation

Aps X g—z — A(n(r,§)§+ A(r,§)> X % — 0 (1.13.10)
This means the 2D projections of the 3D optical momenta ps and p4
onto the plane of the discontinuity in refractive index will be invariant
across the interface.

Thus, preservation of the components of 3D optical momentum
tangential to the discontinuity still holds, but a difficulty occurs be-
cause the ray direction and optical momentum are no longer co-
linear. Instead, they differ by the anisotropy wector, which s or-
thogonal to the desired ray direction and also depends as a prescribed
function of ray direction on either side of the discontinuity.

The geometry for determining the refracted ray direction in an
anisotropic medium thus becomes considerably more involved than
the simple Ibn Sahl-Snell law of ray projection for isotropic me-
dia. There does exist a graphical construction (see, e.g., [Wo02004]),
but its application in the Ibn Sahl-Snell law for construction of the
break in ray direction at a discontinuity in refractive indexr in an
anisotropic medium is problematic, unless the prescribed dependence
of the anisotropy vector on the ray direction s rather simple.

An alternative argument

The loop integral argument in equations (1.1.16) - (1.1.18) reaches
the same conclusion about the difficulty in determining the ray direc-
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tions in general at an interface where the refractive index is discontin-
wous in an anisotopic medium. This argument proceeds by evaluating
the loop integral of the Huygens phase,

jéVS(r) S — j{) (n(r) + A(r,f)) sdr =0, (L1l 2)

taken around a closed path P that surrounds a boundary separating
two different media. Letting the sides of the loop perpendicular to
the interface shrink to zero implies that the tangential components
of the momentum vectors must be preserved, in agreement with the
previous arqgument. Consequently,

((n(r) +A(r, #)) — (0'(r) + A(r, i-))) om0 (909

in agreement with equation (1.15.10). If v and 1’ are the angles of
incident and transmitted momentum directions, measured from
the normal z through the boundary, then preservation of the tangen-
tial components of the momentum vector means that the momentum
vectors must lie in the same plane and the angles ¢ and ' must
satisfy

V2 + A2siny = /()2 + (A’)2sin e’ . (@18813)

Relation (1.15.13) determines the angles of incidence and transmis-
sion of the momentum directions. However, in general, it does nol
determine the ray directions. The ray directions are not invertible
from the co-planar momentum directions, because the anisotropy vec-
tor in equation (1.13.7) shifts the ray vectors into different planes by
an amount depending on the ray direction itself, not the momentum
direction.

1.14 Ten geometrical features of ray optics

1. The design of axisymmetric planar optical systems reduces to
multiplication of symplectic matrices corresponding to each
element of the system, see Theorem 1.6.4.
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2. Hamiltonian evolution occurs by canonical transformations.
Such transformations may be obtained by integrating the char-
acteristic equations of Hamiltonian vector fields, which are de-
fined by Poisson-bracket operations with smooth functions on
phase space, as in the proof of Theorem 1.5.3.

3. The Poisson bracket is associated geometrically with the Jaco-
bian for canonical transformations in Section 1.11.2. Canonical
transformations are generated by Poisson-bracket operations
and these transformations preserve the Jacobian.

4. A one-parameter symmetry, that is, an invariance under canon-
ical transformations generated by a Hamiltonian vector field
Xpy = {:, pg }, separates out an angle, ¢, whose canonically
conjugate momentum py is conserved. As discussed in Section
1.3.2, the conserved quantity ps may be an important bifur-
cation parameter for the remaining reduced system. The dy-
namics of the angle ¢ decouples from the reduced system and
can be determined as a quadrature after solving the reduced
system.

5. Given a symmetry of the Hamiltonian, it may be wise to trans-
form from phase space coordinates to invariant variables as in
(1.4.5). This transformation defines the quotient map, which
quotients out the angle(s) conjugate to the symmetry gen-
erator. The image of the quotient map produces the orbit
manifold, a reduced manifold whose points are orbits under
the symmetry transformation. The corresponding transforma-
tion of the Poisson bracket is done using the chain rule as in
(1.7.6). Closure of the Poisson brackets of the invariant vari-
ables amongst themselves is a necessary condition for the quo-

tient map to be a momentum map, as discussed in Section
1925

6. Closure of the Poisson brackets among an odd number of in-
variant variables is no cause for regret. It only means that this
Poisson bracket among the invariant variables is not canonical
(symplectic). For example, the Nambu R® bracket (1.11.17)
arises this way.
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The bracket resulting from transforming to invariant variables
could also be Lie-Poisson. This will happen when the new in-
variant variables are quadratic in the phase space variables, as
occurs for the Poisson brackets among the axisymmetric vari-
ables X, Xy and X3 in (1.4.5). Then the Poisson brackets
among them are linear in the new variables with constant co-
efficients. Those constant coefficients are dual to the structure
constants of a Lie algebra. In that case, the brackets will take
the Lie-Poisson form (1.10.1) and the transformation to in-
variant variables will be the momentum map associated as in
Remark 1.9.4 with the action of the symmetry group on the
phase space.

The orbits of the solutions in the space of axisymmetric in-
variant variables in ray optics lie on the intersections of level
sets of the Hamiltonian and the Casimir for the noncanonical
bracket. The Petzval invariant S in (1.7.13) is the Casimir for
the Nambu bracket in R?, which for axisymmetric, translation-
invariant ray optics is also a Lie-Poisson bracket. In this case,
the ray paths are revealed when the Hamiltonian knife slices
through the level sets of the Petzval invariant. These level
sets are the layers of the hyperbolic onion shown in Figure 1.8.
When restricted to a level set of the Petzval invariant, the dy-
namics becomes symplectic.

. The phases associated with reconstructing the solution from

the reduced space of invariant variables by going back to the
original space of canonical coordinates and momenta naturally
divide into their geometric and dynamic parts as in equation
(1.12.12). In ray optics as governed by Fermat’s principle, the
geometric phase is related to the area enclosed by a periodic
solution on a symplectic level set of the Petzval invariant S2.
This is no surprise, because the Poisson bracket on the level
set is determined from the Jacobian using that area element.

A Lagrangian may be singular; that is, it may be degenerate, as
occurs in the example of Fermat’s principle in anisotropic media
discussed in Section 1.13. This means the velocity cannot be
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solved from the momentum and its conjugate coordinate. Even
so, the dynamics resulting from the Lagrangian formulation of
the problem may still be well-defined, in the sense that the
solutions may still exist for the resulting ordinary differential
equations.





